2022年9月30日 星期五 责编:张亮 万建刚 美编:许明 审读:邱立波

改进计算思维教学 促进四种能力提升

以《简单算法及其程序实现》一课为例

浙江省象山中学 张秀常

【摘 要】在普通高中新课程改革背景下,计算思维的培养已成为信息技术课 程教学过程中的核心问题,针对当前在课堂上出现的亟待解决问题,笔者以《简单 算法及其程序实现》一课为例,提出以"分解、抽象、构造到迁移"的四种能力培养为 抓手,提供计算思维活动的支撑,促进计算思维活动的跃升。

【关键词】计算思维;信息技术教学;能力培养

一、计算思维培养的重要性

计算思维,是指个体运用计算机 科学领域的思想方法,在形成问题解决 方案的过程中产生的一系列思维活动。

自从《普通高中信息技术课程标 准(2017年版本)》发布后,计算思维 成为一线教师在课堂教学中的"网 红"词,有些教师把和信息技术教学 沾边的内容都作为计算思维的范 围,什么都可以往里面装,但是在课 堂教学缺乏具体抓手,来支持学生

的计算思维活动。

能力,是人们从外界客观世界获 得信息或数据,经过思维加工,抓住 事物本质,形成知识或做出正确判 断的个性心理特征。与计算思维相

关的能力,如分解能力、抽象能力、 构造能力、迁移能力等,它们支撑着 学生的计算思维活动。如何改进计 算思维教学,促进上述四种能力的 提升,成为笔者的教学探索方向。

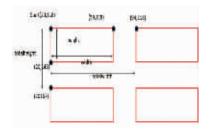
二、影响计算思维的四种能力

浙江教育出版社高中信息技 术必修1《数据与计算》中《简单算 法及其程序实现》一课提出如下问 题:答题卡常用于标准化考试、选 举与调查,一般采用2B铅笔填涂, 填涂后的答题卡经过扫描后得到 相应的图像,再通过光学识别,可 以完成答题卡信息数据的采集、分 析与统计。如图(下图)中的答题 卡,计算机是如何判断哪些信息点 被填涂了呢?

(一)分解能力,提供了计算思 维活动的支撑

针对以上的问题,学生知道答题 卡上的信息点填涂会导致此信息点 上的像素颜色会发生变化,如填涂 前的白色到填涂后的黑色,其实就 是灰度大小发生了改变。基于以上 认识,教师可以按"自顶向下、由大 到小、由未知到已知"的原则来组织 学生进行课堂讨论。

- •8位整数的准考证号如何分解 到1位整数的准考证号的识别。
- ·1位整数的准考证号的识别如 何分解到信息点中像素点的判。
- ·1个像素点的判断如何分解到 它灰度大小的判断。
- ·灰度大小的判断如何分解到像 素点RGB值的计算方法。


英国中小学ICT课程中,分解 是培养学生计算思维的核心能力 之一,在解决一个计算问题的过程 中,会使用到分解方法,将一个复 杂问题化解为一个个简单问题。计

算思维中运用分解方法,可以将整 体的对象、问题、过程或系统分解 成容易处理的独立部分。本例中, 将如何判断哪些信息点被填涂这 个问题,最终被分解成一个已有现 成算法可解决的小问题,即RGB 值的计算方法。

(二)抽象能力,影响了计算思 维活动的品质

关于批量识别准考证号信息点 的问题,如上图1所示的80个信息 点,每个信息点在图像中都有固定 坐标值。

如图(下图)所示,答题卡在设 计时就指定了每个信息点的格式与 参数,信息点中的每个像素坐标可 表示为(水平值,垂直值)。其中, "start"是准考证号填涂区的第一 行第一列的起始位置,它的坐标是 (xstart,ystart)。此外,信息点的宽度 (width)、高度(height)以及信息点 间总计宽度(totalwidth)、高度(totalheight)可以在统一印制的答题卡 上获得。

此时,对于答题卡中的任意一个 信息点的起始位置,可以抽象成一 组数学模型:

X=xstart+totalwidth*lie

Y=ystart+totalheight*hang 此模型中, lie 为列号, 范围在 [0,8],hang为行号,范围在[0,9]。

北京大学计算机系李晓明教授 在课程标准解读中指出,抽象是指 我们在信息活动中能采用计算机可 以处理的方式来提取关键要素、并 分析要素间的相互关系。结合课程 标准,可以理解为:学生在信息活动 或一个解题的步骤。

中找出解决问题的关键对象,分析 关键对象之间的联系、结构,忽略其 中不相关的因素,从而提取关键对 象的属性、规则等特征,并用约定 的、规范的符号或语言清晰地表达 问题。

(三)构造能力,决定了计算思 维活动的高效

构造能力是在抽象的基础上,在 计算机上的具体实现,它的核心特 点是有效,每一操作步骤都是可以 执行的,通过有限的步骤,一定能解 决问题,为此是计算思维活动高效 性的标准。

在分解与抽象的基础上,针对答 题卡的各信息点的识别,就可以来 构造按列识别学生准考证号的计算

如果一个信息点被正确识别,则 可以用srt函数把当前行数hang转 化为字符串形式,并逐个连接到准 考证号变量tcsz上,否则用字符串 "#"来代替。同样,教师可以引导学 生用 for 函数来构造双重循环结构, 完成学生答题卡的所有信息点的识 别(如下图)。

构造能力是按照已知的条件 或能计算的结果,设计出一种模 型、装置或算法来逐步解决问题 的能力。

本例中,就是给它答题卡上信息 点的识别提供一个框架,它可以是 一个函数、一个方程、一个数学模型

(四)迁移能力,促进了计算思 维活动的跃升

在浙江教育出版社高中信息技 术必修1《数据与计算》中,还有许多 案例与问题,有待教师引导学生去 发现与解决,英文如何加密传输(凯 撒密码改进)?如何将图像中的像素 转换成字符(图像字符画的生成)? 推算任意给定某天是星期几(蔡勒 公式的运用)?等等,下面以图像字 符画的生成为例进行概况与分析 (如下图):

- ·图像字符画最终可以分解为一 个像素点的运算。
- ·图像字符画像素点的转换, 可以先用一组抽象数据模型,自定 义函数 totext 来计算出数值,再用 一组列表list中的字符来形成对应
- ·在形成字符画的过程中,可以 用 for 函数来构造双重循环结构,完 成所有像素点的转换。

凡是问题,都要找到它的本质属 性,以便将它与其它类型的问题进 行区分。迁移能力,就是分析并抓住 个别问题的本质属性,推及到同类 问题本质属性上来。计算思维作为 一种跨越现实世界与计算机世界的 思维方式,需要学习者对现实世界 的本质属性按照计算机科学领域的 处理方式进行思考,好的迁移能力 可以对解决问题中的过程与方法进 行优化,形成解决同类或相关性质 问题的通用或创新方案,促进计算 思维从个别到一般,从感性到理性 的跃升。

三、总结与反思

通过以上案例,教师借助学生 然后构造合理的解决模型,在同 导学生对问题进行分解与抽象,

答题卡这个真实的问题情境,引 类或相似问题上进行迁移,最后 促进学生计算思维的形成与发 标可以成为计算思维教学的具体

展。同时,学生的计算思维也可以

目标,也可以作为计算思维教学 通过学生的能力来外显,能力目的一种评价指标,是一种实实在 在的抓手。